abstract__Abstract__ In previous work, two axiomatic characterizations were given for the median function on median graphs: one involving the three simple and natural axioms anonymity, betweenness and consistency; the other involving faithfulness, consistency and ½-Condorcet. To date, the independe
abstractLet $G = (V,E)$ be a graph. A partition $\pi = \{V_1, V_2, \ldots, V_k \}$ of the vertices $V$ of $G$ into $k$ {\it color classes} $V_i$, with $1 \leq i \leq k$, is called a {\it quorum coloring} if for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$
abstractThe median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian
abstractThe median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian
abstractA profile = (x1, ..., xk), of length k, in a finite connected graph G is a sequence of vertices of G, with repetitions allowed. A median x of is a vertex for which the sum of the distances from x to the vertices in the profile is minimum. The median function finds the set of all medians of a
abstractMaximal outerplanar graphs are characterized using three different classes of graphs. A path-neighborhood graph is a connected graph in which every neighborhood induces a path. The triangle graph $T(G)$ has the triangles of the graph $G$ as its vertices, two of these being adjacent whenever
abstractAn antimedian of a profile $\\pi = (x_1, x_2, \\ldots , x_k)$ of vertices of a graph $G$ is a vertex maximizing the sum of the distances to the elements of the profile. The antimedian function is defined on the set of all profiles on $G$ and has as output the set of antimedians of a profile.
abstractThe geodesic structure of a graphs appears to be a very rich structure. There are many ways to describe this structure, each of which captures only some aspects. Ternary algebras are for this purpose very useful and have a long tradition. We study two instances: signpost systems, and a speci
Go to page top
Go back to contents
Go back to site navigation