markdownabstract__Abstract__ A location problem can often be phrased as a consensus problem or a voting problem. We use these three perspectives, namely location, consensus and voting to initiate the study of several questions. The median function Med is a location/consensus function on a connected
markdownabstract__Abstract__ A median (antimedian) of a profile of vertices on a graph $G$ is a vertex that minimizes (maximizes) the remoteness value, that is, the sum of the distances to the elements in the profile. The median (or antimedian) function has as output the set of medians (antimedians
abstract__Abstract__ In previous work, two axiomatic characterizations were given for the median function on median graphs: one involving the three simple and natural axioms anonymity, betweenness and consistency; the other involving faithfulness, consistency and ½-Condorcet. To date, the independe
abstractLet $G = (V,E)$ be a graph. A partition $\pi = \{V_1, V_2, \ldots, V_k \}$ of the vertices $V$ of $G$ into $k$ {\it color classes} $V_i$, with $1 \leq i \leq k$, is called a {\it quorum coloring} if for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$
abstractThe median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian
abstractThe median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian
abstractA profile = (x1, ..., xk), of length k, in a finite connected graph G is a sequence of vertices of G, with repetitions allowed. A median x of is a vertex for which the sum of the distances from x to the vertices in the profile is minimum. The median function finds the set of all medians of a
abstractMaximal outerplanar graphs are characterized using three different classes of graphs. A path-neighborhood graph is a connected graph in which every neighborhood induces a path. The triangle graph $T(G)$ has the triangles of the graph $G$ as its vertices, two of these being adjacent whenever
abstractAn antimedian of a profile $\\pi = (x_1, x_2, \\ldots , x_k)$ of vertices of a graph $G$ is a vertex maximizing the sum of the distances to the elements of the profile. The antimedian function is defined on the set of all profiles on $G$ and has as output the set of antimedians of a profile.
Go to page top
Go back to contents
Go back to site navigation