KNAW

Publicatie

Efficient Bayesian multivariate fMRI analysis using a sparsifying... (2010)

Pagina-navigatie:
Titel Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
Gepubliceerd in Neuroimage, Vol. 50, p.150-161. ISSN 1053-8119.
Auteur Gerven, M.A.J. van; Cseke, B.; Lange, F.P. de; Heskes, T.
Datum 2010
Type Artikel
Samenvatting Bayesian logistic regression with a multivariate Laplace prior is introduced as a multivariate approach to the analysis of neuroimaging data. It is shown that, by rewriting the multivariate Laplace distribution as a scale mixture, we can incorporate spatio-temporal constraints which lead to smooth importance maps that facilitate subsequent interpretation. The posterior of interest is computed using an approximate inference method called expectation propagation and becomes feasible due to fast inversion of a sparse precision matrix. We illustrate the performance of the method on an fMRI dataset acquired while subjects were shown handwritten digits. The obtained models perform competitively in terms of predictive performance and give rise to interpretable importance maps. Estimation of the posterior of interest is shown to be feasible even for very large models with thousands of variables.
Publicatie http://repository.ubn.ru.nl/handle/2066/84236
OpenURL Zoek deze publicatie in (uw) bibliotheek
Persistent Identifier urn:nbn:nl:ui:22-2066/84236
Metadata XML
Bron Radboud Universiteit Nijmegen

Omhoog
Ga terug naar de inhoud
Ga terug naar de site navigatie